This study proposes a method of constructing type II generalized angulated elements (GAEs II) Hoberman sphere mechanisms on the basis of deployment axes that intersect at one point. First, the constraint conditions for inserting n GAEs II into n deployment axes to form a loop are given. The angle constraint conditions of the deployment axes are obtained through a series of linear equations. Second, the connection conditions of two GAEs II loops that share a common deployable center are discussed. Third, a flowchart of constructing the generalized Hoberman sphere mechanism on the basis of deployment axes is provided. Finally, four generalized Hoberman sphere mechanisms based on a fully enclosed regular hexahedron, arithmetic sequence axes, orthonormal arithmetic sequence axes, and spiral-like axes are constructed in accordance with the given arrangement of deployment axes that satisfy the constraint conditions to verify the feasibility of the proposed method.