Microscale patterns consisting of two-dimensional (2D) dendrites with trunks and branches 1–3 μm wide were precisely controlled through crystal growth in a thin polymer matrix by the use of a dipping technique. A variety of 2D micropatterns, such as orthogonal lattices, bull’s horns, randomly curving weaves, and aligned dots, were homogeneously formed with an aqueous solution of Ba(NO3)2 and poly(vinyl alcohol) in a wide area ranging over several centimeters on flat and rounded substrates. The micrometric dendritic growth that produced these several patterns was tuned by changing the withdrawal rate and the polymer concentration. The crystallographic orientation of the micropatterns was characterized to discuss on the formation mechanism of the specific morphologies. The curving branches were found to be induced by gradual change in the growth direction through low-angle grain boundaries under a highly diffusion-limited condition. This simple, bottom-up patterning process is applicable for various crystalline materials, including inorganic and organic substances.
Read full abstract