ComplexityVolume 15, Issue 3 p. 7-10 The Simply ComplexFree Access Origins of life: Concepts, data, and debates Managing complexity seems to be essential for studies on chemical evolution Peter Schuster, Peter Schuster [email protected] Peter Schuster is at the Institüt für Theortische Chemie der Universität Wien, A-1090 Wien, AustriaSearch for more papers by this author Peter Schuster, Peter Schuster [email protected] Peter Schuster is at the Institüt für Theortische Chemie der Universität Wien, A-1090 Wien, AustriaSearch for more papers by this author First published: 09 December 2009 https://doi.org/10.1002/cplx.20302 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL REFERENCES 1 Schopf, J.W.;Packer, B.M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 1987, 237, 70– 73. 2 Brasier, M.;Green, O.;Lindsay, J.;Steele, A. Earth Oldest (∼3.5 Ga) fossils and the “early Eden hypothesis”: Questioning the evidence. Orig Life Evol Biosph 2004, 34, 257– 269. 3 Schopf, J.W. Fossil evidence of Archaean life. Philos Trans R Soc (London) B 2006, 361, 869– 885. 4 Hazen, G.M. Genesis: The scientific quest for Life's origins; Joseph Henry Press: Washington, DC, 2005. 5 Shapiro, R. A replicator was not involved in the origin of life. IUBMB Life 2000, 49, 173– 176. 6 R.F. Gestland; T.R. Cech; J.F. Atkins, Eds. The RNA World. The Nature of Modern RNA Suggests a Prebiotic RNA World, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2006. 7 Powner, M.W.;Gerland, B.;Sutherland, J.D. Synthesis of activated pyridine ribonucleotides in prebiotically plausible conditions. Nature 2009, 459, 239– 242. 8 Lincoln, T.A.;Joyce, G.F. Self-sustained replication of an RNA enzyme. Science 2009, 323, 1229– 1232. 9 D.M. Lilly; F. Eckstein, Eds. Ribozymes and RNA Catalysis; Royal Society of Chemistry Publishing: Cambridge, UK, 2007. 10 Eschenmoser, A. The search for the chemistry of life's origin. Tetrahedron 2007, 63, 12821– 12843. 11 Morowitz, H.J.;Kostelnik, J.D.;Yang, J.;Cody, G.D. The origin of intermediary metabolism. Proc Natl Acad Sci USA 2000, 97, 7704– 7704. 12 Smith, E.;Morowitz, H.J. Universality in intermediary metabolism. Proc Natl Acad Sci USA 2004, 101, 13168– 13173. 13 Schuster, P. Taming combinatorial explosion. Proc Natl Acad Sci USA 2000, 97, 7678– 7680. 14 Orgel, L.E. Self-organizing biochemical cycles. Proc Natl Acad Sci USA 2000, 97, 12503– 12507. 15 Orgel, L.E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol 2008, 6, e18. 16 Breslow, R. On the mechanism of the formose reaction. Tetrahedron Letters 1959, 1, 22– 26. 17 Ricardo, A.;Carrigan, M.A.;Olcott, A.N.;Benner, S.A. Borate minerals stabilize ribose. Science 2004, 303, 196. 18 Segrè, D.;Lancet, D.;Kedem, O.;Pilpel, Y. Graded autocatalysis replication domain (GARD): Kinetic analysis of self-replication in mutually catalytic sets. Orig Life Evol Biosph 1998, 28, 501– 514. 19 Segrè, D.;Ben-Eli, D.;Lancet, D. Compositional genomes: Prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 2000, 97, 4112– 4117. 20 Hunding, A.;Kepes F.;Lancet, D.;Minsky, A.;Norris, V.;Raine, D.;Sriram, K.;Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 2006, 28, 399– 412. 21 Vasas, W.;Szathmáry, E.;Santos, M. Lack of evolvability in self-sustaining autocatalytic networks: A constraint on metabolism-first path to the origin of life. Proc Natl Acad Sci USA, in press. 22 Kauffman, SA. Autocatalytic sets of proteins. J Theor Biol 1986, 119, 1– 24. 23 Eigen, M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465– 523. 24 Szostak, J.W.;Bartel, D.P.;Luisi, P.L. Synthesizing life. Nature 2001, 409, 387– 390. 25 Oberholzer, T.;Wick, R.;Luisi, P.L.;Biebricher, C.K. Enzymatic RNA replication in self-reproducing vesicles: An approach to a minimal cell. Biochem Biophys Res Comm 1995, 207, 250– 257. 26 Kita, H.;Matsuura, T.;Sunami, T.;Hosoda, K.;Ichihashi, N.;Tsukada, K.;Urabe, I.;Yomo, T. Replication of genetic information with self-emcoded replicase in liposomes. ChemBioChem 2008, 9, 2403– 2410. 27 Mansy, S.S.;Schrum, J.P.;Krishnamurthy, M.;Tobé, S.;Treco, D.A.;Szostak, J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature 2009, 454, 122– 126. 28 S. Rasmussen; M.A. Bedau; L. Chen; D. Deamer; D.C. Krakauer; N.H. Packard; P.F. Stadler, Eds. Protocells. Bridging nonliving and living matter; The MIT Press: Cambridge, MA, 2009. 29 Caetano-Anollés, G.;Kim, H.S.;Mittenthal, J.E. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 2007, 104, 9358– 9363. 30 Caetano-Anollés, G.;Yafremava, L.S.;Gee, H.;Caetano-Anollés, D.;Kim, H.S.;Mittenthal, J.E. The origin of modern metabolism. Int J Biochem Cell Biol 2009, 41, 285– 297. Volume15, Issue3January/February 2010Pages 7-10 ReferencesRelatedInformation
Read full abstract