The disposal of tea leaves discarded in the tea beverage market and clinker from coal-fired power plants has an impact on the environment; however, there are no reported cases of their combination for composting. Therefore, this study evaluated the effect of adding clinker from a coal-fired power plant to compost based on tea leaves, an organic waste product, on the composting rate and quality. The tea leaves-only compost was designated as Clinker 0%, and composts with 20% (w/w), 40% (w/w), and 60% (w/w) tea leaves supplemented with clinker were designated as Clinker 20, 40, and 60%, respectively. Each mixed material was placed in a 35 L polypropylene container with a lid and allowed to compost for 95 days. The composting rate was evaluated by the chemical oxygen demand (COD) in hot water extract and plant tests using juvenile komatsuna (Brassica rapa var. perviridis). The addition of clinker reduced the COD at the beginning of composting by 52.0, 74.3, and 86.7% in Clinker 20, 40, and 60%, respectively, compared to Clinker 0%. Furthermore, root elongation one month after composting was inhibited by Clinker 0% (60.1% relative to distilled water), but not by the addition of clinker (91.7–102.7% relative to distilled water). This suggests that the addition of clinker to tea leaf compost may accelerate composting.
Read full abstract