The treatment of complex polluted wastewater has become an increasingly critical concern for the various types of hazardous organic compounds, including synthetic dyes and pharmaceuticals. Due to their efficient and eco-friendly advantages, the white-rot fungi (WRF) have been applied to degrade environmental pollutants. This study aimed to investigate the removal ability of WRF (i.e., Trametes versicolor WH21) in the co-contamination system composed of Azure B dye and sulfacetamide (SCT). Our study discovered that the decolorization of Azure B (300 mg/L) by strain WH21 was significantly improved (from 30.5% to 86.5%) by the addition of SCT (30 mg/L), while the degradation of SCT was also increased from 76.4% to 96.2% in the co-contamination system. Transcriptomic and biochemical analyses indicated that the ligninolytic enzyme system was activated by the enhanced enzymatic activities of MnPs and laccases, generating higher concentration of extracellular H2O2 and organic acids in strain WH21 in response to SCT stress. Purified MnP and laccase of strain WH21 were revealed with remarkable degradation effect on both Azure B and SCT. These findings significantly expanded the existing knowledge on the biological treatment of organic pollutants, indicating the strong promise of WRF in the treatment of complex polluted wastewater.