Abstract

Spartina alterniflora, as an invasive alien species, has been studied in terms of its potential use in immobilization and synergistic photocatalysis against dye contaminants for the first time. Microscopic characterization and Fourier transform infrared (FTIR) spectroscopy results confirmed the presence of abundant 3D wormhole-like pore structures and active functional groups (-OH, –NH2, CO, Si–O–Si). Moreover, the existence of SiO2 was connected the metal oxides with polar groups, which could proceed entire reaction procedure subsequently. Transition metal oxides (such as Fe2O3, TiO2, MnO2 and NiO) contained in photocatalysts might effectively promote the organics decomposition by the visible light excitation. The highest dye removal efficiency of 92.03% could be reached with the addition of 0.02 g photocatalyst. The capture experiment confirmed that the h+ was the dominant active substance during the photocatalytic degradation process. Density functional theory (DFT) calculations verified that the functional groups (-COOH, –OH and –NH2) were exceptional adsorption sites for catalyst, and the calculated adsorption energy were all negative with the order of SRHH-NH2 (−2.712688 eV) < SRHH-OH (−2.075601 eV) < SRHH-COOH (−1.283141 eV), which confirmed that interface interaction effectively bound cationic dyes through the formation of hydrogen bonds at the catalysts-water interface, further accelerating the reaction rate of the entire photocatalytic reduction of dye molecules. Therefore, this work provides a feasible synthesis of natural photocatalysts using solid waste, which suggests excellent adsorption and photocatalysis properties for the treatment of organic industrial pollutant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.