Summary All-inorganic perovskite solar cells (PSCs) have attracted wide attention for their excellent thermal stability. However, the detailed crystallization process and complicated phase-transition mechanism of the CsPbX3 film with different halide compositions (I, Br, Cl) remain mysterious. In this study, systematic investigations are performed via state-of-art in situ grazing-incidence wide-angle X-ray scattering to understand the role of the halide elements in all-inorganic perovskite crystallization kinetics, phase-transition, and stabilization mechanism as well as how film morphology and grain size are affected. Based on these results, we were able to fabricate high-performance ternary halide (I, Br, Cl) all-inorganic PSCs through a precise compositional engineering. Our results provide guidance for an in-depth understanding of all-inorganic perovskite materials and pave the way to obtain high-performance all-inorganic PSCs.
Read full abstract