Abstract

Hybrid organic-inorganic lead halide perovskites are projected as new generation photovoltaic and optoelectronic materials with improved efficiencies. However, their electronic structure so far remains poorly understood, particularly in the orientationally disordered cubic phase. We performed electronic structure investigations using angle-resolved photoemission spectroscopy on two prototypical samples (MAPbBr3 and MAPbCl3) in their cubic phase, and the results are compared with the calculations within two theoretical models where MA+ is orientationally (1) disordered (MA+ ion is replaced by spherically symmetric Cs+ ion) and (2) ordered (MA oriented along (100) direction) but keeping the symmetry of the unit cell cubic. Degeneracy of the valence bands and behavior of constant energy contours are consistent with model 1, which supports strongly the disordered nature of the orientation of the MA+ ions in the cubic phase. Band structure calculations also reveal that spin-orbit coupling induced Rashba splitting is suppressed by the orientational disorder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.