Carbon transformations during anaerobic digestion are mediated by complex microbiomes, but their assembly is poorly understood, especially in full-scale digesters. Gene-centric metagenomics combining functional and taxonomic classification was performed for an on-farm digester during start-up. Cow manure and organic waste pre-treated in a hydrolysis tank were fed to the methane-producing digester and the volatile solids loading rate was slowly increased from 0 to 3.5 kg volatile solids m−3 d−1 over one year. The microbial community in the anaerobic digester exhibited a high ratio of archaea, which were dominated by hydrogenotrophic methanogens. Bacteria in the anaerobic digester had a high abundance of genes for ferredoxin cycling, H2 generation, and more metabolically complex fermentations than in the hydrolysis tank. In total, the results show that a functionally stable microbiome was achieved quickly during start-up and that the microbiome created in the low-pH hydrolysis tank did not persist in the downstream anaerobic digester.