Abstract
The aggregation kinetics of biochar colloids (BCs) play a crucial role in the fate and transport of contaminants, as well as the carbon (C) cycle in the environment. However, the colloidal stability of BCs from various feedstocks is very limited. In this study, the critical coagulation concentration (CCC) of twelve standard biochars pyrolyzed from various feedstocks (municipal source, agricultural waste, herbaceous residue, and woody feedstock) at 550 °C and 700 °C were investigated, and the relationship between the physicochemical characteristics of biochar and the colloidal stability of BCs was further analyzed. The CCC of BCs in the NaCl solution followed the trend of municipal source < agricultural waste < herbaceous residue < woody feedstock, which was similar to the order of C content in biochar. The CCC of BCs showed a strong positive correlation with the C content of various biochars, especially pyrolyzed at a higher temperature of 700 °C. The BCs derived from lignin-rich feedstock (e.g., woody feedstock) had the highest colloidal stability, followed by cellulose-rich feedstock (e.g., agricultural waste and herbaceous residue). The BCs derived from organic matter-rich feedstock (municipal source) were easy to aggregate in the aqueous environment. This study quantitatively provides new insights into the relationship between BCs stability and biochar characteristics from various feedstocks, which is critical to assess biochar environmental behavior in aqueous environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.