Based on the energy transfer process from host to dopant in an organic electrophosphorescent (EP) device, the expression of energy transfer probability (η) between the host (TPD) and guest (Ir(ppy)3) EP systems was proposed. The results show that: (1) The rate of the triplet energy transfer (KHG and KGH) increases exponentially with increasing donor-acceptor molecular distance (R), whereas decreases as the intermolecular distance (RHH) increases from 0.8 to 2.4 nm. Furthermore, KGH changes more quickly than KHG. (2) The energy transfer probability (η) increases as R reduces and the RHH changes can be safely neglected for R 1.1nm, the transfer probability will be below zero. Here, the energy transfer principle may be less important and the high electroluminescence (EL) quantum efficiency of phosphorescent system will be attributed to the direct electron-hole recombination in phosphorescent molecules. (3) The η will increase when the Forster radius (R0) increases or Gibb's energy decreases.