Abstract

In this paper, we demonstrate that the organic electrophosphorescent device is driven by the organic thin film transistor with spin-coated photoacryl gate insulator. It was found that electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure showed the non-saturated slope in the saturation region and the sub-threshold nonlinearity in the triode region, where we obtained the maximum power luminance that was about 90 cd/m². Field effect mobility, threshold voltage, and on-off current ratio in 0.45 µm thick gate dielectric layer were 0.17 cm²/Vs, -7 V and 106, respectively. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and cured at 150°C for 1hr. It was also found that field effect mobility, threshold voltage, on-off current ratio, and sub-threshold slope with 0.45 µm thick gate dielectric films were 0.134 cm²/Vs, -7 V and 106 AA, and 1 V/decade, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.