In this paper, a robust stabilizing controller design method is presented for global power control of a Pressurized Heavy Water Reactor (PHWR) under step-back condition scheme using a Fractional Order Proportional Integral Derivative (PIλDμ) controller resulting into robust performance. The method is applicable to design a controller for One Non Integer Order Plus Time Delay (NIOPTD-I) plant which satisfies design specifications such as phase margin and gain crossover frequency. Stability boundary locus method is used in (Kp, Ki, Kd) parameter space for NIOPTD-I plants to obtain stability region. The robust performance is obtained by satisfying flat phase condition at gain crossover frequency where phase is almost constant for large span of frequencies. The simulation result of the proposed PIλDμ controller shows active step-back control to the insertion of the rod with no undershoot and with the robust performance, hence safe to the plant for gain variations from 500% lower side to 1000% upper side. The PIλDμ controller with a plant shows that 30% and 50% global power drop from initial 100% is achieved in a reasonable time without undershoot.