We develop a general class of derivative free iterative methods with optimal order of convergence in the sense of Kung–Traub hypothesis for solving nonlinear equations. The methods possess very simple design, which makes them easy to remember and hence easy to implement. The Methodology is based on quadratically convergent Traub–Steffensen scheme and further developed by using Padé approximation. Local convergence analysis is provided to show that the iterations are locally well defined and convergent. Numerical examples are provided to confirm the theoretical results and to show the good performance of new methods.