Abstract

The development of microelectronic field and software allows researchers to implement some control law in miniaturized devices such as Field Programmable Gate Arrays (FPGA) and microcontroller. These control laws may be used in industrial applications. The key of this work is the design and the implementation of a fixed low order controller on a STM32 microcontroller in order to control an electronic system. The main objective of this controller is to ensure some time response performances as the settling time and the overshoot. The controller parameters are obtained by resolving a non convex optimization problem while considering the desired closed loop specifications. So, the use of a classical optimization method to resolve such kind of problems may lead to a local solution and then the obtained solution is not optimal. Therefore, it is suggested to apply a global optimization method in order to get an optimal control law that can ensure the specified time response performances. The proposed method in this work is the Generalized Geometric Programming (GGP) method. This method consists on transforming, by some mathematical transformations, a non convex optimization problem to a convex one. The implementation of a Proportional Integral (PI) controller, a Proportional Integral Derivate (PID) and a fixed low order controller, on a real electronic system, shows the efficiency of the latter one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call