Abstract

One among a lot of public health concerns in rural and tropical areas is the human intestinal parasite. Traditionally, diagnosis of these parasites is by visual analysis of stool specimens, which is usually tedious and time-consuming. In this study, the authors combine techniques in the Laplacian pyramid, Gabor filter, and wavelet to build a feature vector for the discrimination of intestinal worm in a low-resolution image captured with mobile devices. The dimension of the feature vector is reduced using principal component analysis, and the resultant vector is considered as input to the SVM classifier. The proposed framework was applied to the Makerere intestinal dataset. At its preliminary stage, the results demonstrate satisfactory classification with an accuracy rate of 65.22% with possible extension in future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.