Organo-clay can be utilized for the containment of environmentalpollutants originating from waste sites or accidental spills. Abatch study was conducted using organo-clays produced from aWyoming montmorillonite (SWy) and three organic cations(trimethylphenylammonium (TMPA), trimethylammonium adamantane(Adam), and hexadecyltrimethylammonium (HDTMA)) to characterizeBTEX (benzene, toluene, ethylbenzene, o-, m-, p-xylene) sorption. Sorption data were fitted to two models,with Freundlich resulting in greater correlations of the datathan the Langmuir model (R2 at P ≤0.001-0.05). The Freundlich conditional index (nf),which describes the experimental sorption characteristics,decreased curvilinearly with organic-cation molecular weights,thus suggesting organo-clays with smaller cations had greaterhydrocarbon retention. Sorption of BTEX followed the order ofTMPA > Adam > HDTMA organo-clays. A similar sequence in themagnitudes of log Kd and log Komsupportedthis finding. Positive log Kom/Kow valuesfor TMPA and Adam derivatives indicated there was a greaterretention of BTEX by these organo-clays than octanol. The orderof log Kom for SWy-HDTMA, although concentration-dependent, was analogous to the log Kow order,indicating partitioning was the dominant sorption mechanism forthe HDTMA-clay. Isotherms for SWy-TMPA and SWy-Adam followed aconvex up pattern. In contract, a concave up curvature, notedfor SWy-HDTMA isotherms, was probably caused by a cosorptiveenhancement process resulting from an effective increase in organic matter content of the organo-clay due to furtherhydrocarbon sorption,in concurrence with a decrease inadsorbate activity coefficients. Values of binding affinityconstant, Kf, for SWy-TMPA were consistently higherthan SWy-Adam. The Kf values determined for totalBTEX sorption by TMPA and Adam derivatives were higher thanthose for the individual hydrocarbons. With SWy-HDTMA, the same order was observed for benzene and toluene; however, ethylbenzene and xylenes had greater Kf values thanthat for the BTEX mixture, possibly due to higher partitioningaffinity of the larger alkylbenzenes. With SWy-HDTM, thesequence of Kf values was: ethylbenzene > m-xylene > p-xylene > o-xylene > toluene >benzene. Trends for SWy-TMPA and SWy-Adam were in contrast tothat of the partitioning order, suggesting that adsorption, ratherthan partitioning, was the primary sorption mechanism for thesetwo organo-clays. With respect to the equilibriumconcentrations, the sorbed amounts for total BTEX mixture weregenerally higher than those for the individual compounds. Ascompared to benzene and toluene, the large-size alkylbenzenesshowed greater partitioning affinity due to their high hydrophobicity.
Read full abstract