In this work, alginate–carbon composites with different active carbon content were synthesized and studied by various techniques. The obtained materials can be used as adsorbents in the processes of removing organic pollutants from water. In this study, the effect of the immobilization of activated carbon in calcium alginate was investigated. Textural properties were determined by measuring low-temperature nitrogen adsorption/desorption isotherms. The largest specific surface area was recorded for ALG_C8 and amounted to 995 m2/g. The morphology of alginate materials was determined on the basis of scanning electron microscopy. The adsorption properties were estimated based on the measurements of equilibrium and adsorption kinetics. The highest sorption capacities were 0.381 and 0.873 mmol/g for ibuprofen and diclofenac, respectively. The generalized Langmuir isotherm was used to analyze the equilibrium data. A number of equations and kinetic models were used to describe the adsorption rate data, including first (FOE) and second (SOE) order kinetic equations, 1,2-mixed-order kinetic equation (MOE), fractal-like MOE equation (f-MOE), multi-exponential equation (m-exp), in addition to diffusion models: intraparticle diffusion model (IDM) and pore diffusion model (PDM). Thermal stability was determined on the basis of data from thermal analysis in an atmosphere of synthetic air.
Read full abstract