The spatial distribution of particle flow and atomic density of the two-dimensional, harmonically trapped, ideal atomic gases in synthetic magnetic field and rotating frame are systematically investigated in various regimes of temperature. The magnetization and particle flow of rotating fermions exhibit a de Haas–van Alphen-like oscillation at relatively low temperature. This phenomenon is analogous to the quantum oscillation of orbital magnetism and current in confined electron system. An elaborate comparison with Bose system is also proposed.