Abstract

The spatial distribution of particle flow and atomic density of the two-dimensional, harmonically trapped, ideal atomic gases in synthetic magnetic field and rotating frame are systematically investigated in various regimes of temperature. The magnetization and particle flow of rotating fermions exhibit a de Haas–van Alphen-like oscillation at relatively low temperature. This phenomenon is analogous to the quantum oscillation of orbital magnetism and current in confined electron system. An elaborate comparison with Bose system is also proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.