Recent plans for large constellations in Low-Earth Orbit have opened the debate on both their vulnerability and their influence on the already hazardous space debris environment. In fact, given that large constellations normally employ satellites of small size, there might be situations in which cm-size debris could have enough energy to cause fragmentation of a significant part of these spacecraft upon impact, while smaller debris could affect the functionalities of critical subsystems, even compromising the success of disposal operations planned at end-of-life. In this context, this paper investigates: (1) collisions with large objects that could initiate the fragmentation of a significant part of the satellite, and (2) impacts with small debris that might perforate the spacecraft hull thus causing relevant performance/functionality degradation. These two points are merged in a simple statistical tool for risk assessment, which analyses the effects of the main parameters of the constellations on its vulnerability (i.e. operational life, number of satellites, spacecraft cross section, satellites reliability). In more details, the tool relates impact probability (for both small and large debris) to the ballistic response of spacecraft structures and protections, defining the critical configurations that might compromise the expected disposal operations. This method requires a limited knowledge of the spacecraft internal layout, as it is based on a statistical analysis of impact damage instead of a complete evaluation of the vulnerability of each subsystem. In parallel, non-debris related failures are also investigated and statistic models of spacecraft reliability characteristic are proposed. Among the results, it is shown that reducing the lifetime of individual satellites in a constellation might improve the success rate of post-mission disposal, thanks to the reduction of the spacecraft exposure to the space environment with the consequential degradation of its performance. On the other hand, reducing the lifetime would seriously affect the debris environment: the increase in traffic in the most crowded altitudes would be not counterbalanced by the higher post mission disposal success rate, causing an overall increase of the total number of uncontrolled resident objects.
Read full abstract