Polymer matrix tablets are an important drug-delivery system widely used for oral drug administration. Understanding the tablet hydration process, both experimentally and theoretically, is, thus, very important for the development of drug delivery systems that exhibit high drug loading capacity and controlled release potential. In this study, we used magnetic resonance microscopy (MRM) to nondestructively and dynamically analyze the water hydration process of xanthan-based tablets. The swelling process was characterized by well-resolved fronts of erosion, swelling, and penetration. The experimental results were complemented by numerical simulations of the polymer matrix hydration process. In the simulations, the polymer tablet matrix was modeled as an assembly of interacting chains with embedded drug particles, while its hydration process was mediated by interaction with solvent particles. The swelling dynamics were modeled within a Monte Carlo-based bond fluctuation model (BFM) that elegantly accounted for steric and nearest-neighbor interactions. This study provides an efficient experimental-theoretical approach for the study of polymer matrix swelling processes.
Read full abstract