Abstract
ObjectiveTo identify factors related to poor prognosis in patients with cerebral infarction (CI) and to construct and validate a personalized prediction model based on these factors. MethodsA retrospective analysis was conducted on the clinical and follow-up data of 857 patients with CI who were diagnosed in the neurology department of a tertiary A hospital in Anhui Province, China from April 2020 to March 2022. Based on follow-up data and the Modified Rankin Scale (mRS) score one year after discharge, patients were divided into a good prognosis group (793 cases, mRS ≤2) and a poor prognosis group (64 cases, mRS >2). Multivariate logistic regression analysis was used to identify independent risk factors, which were then used to establish a nomogram model. The predictive performance of the model was evaluated using the area under the receiver operating characteristic curve (ROC, AUC), and the calibration curve was used to evaluate the calibration of the nomogram. ResultsThere was a statistically significant difference in the distribution of eight variables between the groups, including post-discharge use of biguanide hypoglycemic drugs, insulin, systolic blood pressure, exercise status, alcohol consumption, smoking status, age, and gender (P < 0.05). Multivariate logistic regression analysis suggested that gender, smoking after discharge, alcohol consumption, lack of exercise, and oral administration of biguanide hypoglycemic drugs are independent risk factors for poor prognosis in patients with CI (P < 0.05). The personalized poor prognosis nomogram constructed based on these five predictive factors showed good discriminative ability and predictive stability, with AUCs of 0.768 (95 % CI: 0.712–0.825) and 0.775 (95 % CI: 0.725–0.836) before and after internal validation, respectively. The calibration curve confirmed the accuracy and consistency of the nomogram (P = 0.956). ConclusionFemale gender, smoking, alcohol consumption, lack of exercise, and post-discharge use of biguanide hypoglycemic drugs are independent risk factors for poor prognosis in patients with CI. The constructed nomogram shows good predictive efficiency for post-discharge prognosis and can help in clinical decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.