Abstract

ObjectivesTo explore the factors associated with poor prognosis in critically ill patients with Electroencephalogram (EEG) patterns exhibiting stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and to construct a prognostic prediction model. MethodsThis study included a total of 53 critically ill patients with EEG patterns exhibiting SIRPIDs who were admitted to the First Affiliated Hospital of Chongqing Medical University from May 2023 to March 2024. Patients were divided into two groups based on their Modified Rankin Scale (mRS) scores at discharge: good prognosis group (0–3 points) and poor prognosis group (4–6 points). Retrospective analyses were performed on the clinical and EEG parameters of patients in both groups. Logistic regression analysis was applied to identify the risk factors related to poor prognosis in critically ill patients with EEG patterns exhibiting SIRPIDs; a risk prediction model for poor prognosis was constructed, along with an individualized predictive nomogram model, and the predictive performance and consistency of the model were evaluated. ResultsMultivariate logistic regression analysis revealed that APACHE II score (OR=1.217, 95 %CI=1.030∼1.438), slow frequency bands or no obvious brain electrical activity (OR=8.720, 95 %CI=1.220∼62.313), and no sleep waveforms (OR=9.813, 95 %CI=1.371∼70.223) were independent risk factors for poor prognosis in patients. A regression model established based on multivariate logistic regression analysis had an area under the curve of 0.902. The model's accuracy was 90.60 %, with a sensitivity of 92.86 % and a specificity of 89.70 %. The nomogram model, after internal validation, showed a concordance index of 0.904. ConclusionsA high APACHE II score, EEG patterns with slow frequency bands or no obvious brain electrical activity, and no sleep waveforms were independent risk factors for poor prognosis in patients with SIRPIDs. The nomogram model constructed based on these factors had a favorably high level of accuracy in predicting the risk of poor prognosis and held certain reference and application value for clinical neurofunctional assessment and prognostic determination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.