Abstract
Surgical resection for epilepsy often fails due to incomplete Epileptogenic Zone Network (EZN) localization from scalp electroencephalography (EEG), stereo-EEG (SEEG), and Magnetic Resonance Imaging (MRI). Subjective interpretation based on interictal, or ictal recordings limits conventional EZN localization. This study employs multimodal analysis using high-density-EEG (HDEEG), Magnetoencephalography (MEG), functional-MRI (fMRI), and SEEG to overcome these limitations in a patient with drug-resistant MRI-negative focal epilepsy. A 17-year-old with drug-resistant epilepsy underwent evaluation. HDEEG, MEG, fMRI, and SEEG were used, with a novel HDEEG-cap facilitating simultaneous EEG-MEG and EEG-fMRI recordings. Electrical and magnetic source imaging were performed, and fMRI data were analysed for homogenous regions. SEEG analysis involved spike detection, spike timing analysis, ictal fast activity quantification, and Granger-based connectivity analysis. Non-invasive sessions revealed consistent interictal source imaging results identifying the EZN in the right anterior cingulate cortex. EEG-fMRI highlighted broader activation in the right cingulate cortex. SEEG analysis localized spikes and fast activity in the right anterior and posterior cingulate gyri. Multi-modal analysis suggested the EZN in the right frontal lobe, primarily involving the anterior and mid-cingulate cortices. Multi-modal non-invasive analyses can optimise SEEG implantation and surgical decision-making. Invasive analyses corroborated non-invasive findings, emphasising the importance of individual-case quantitative analysis across modalities in complex epilepsy cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.