Larotaxel (LTX) and SB-T-1214 (SBT), two new synthetic experimental toxoids, have shown broad-spectrum antitumor activity, especially against tumors that are resistant to other drugs. However, their poor solubility, membrane permeability, and first-pass effect limits their use in oral administration. We designed and synthesized two long-chain triglyceride-mimic prodrugs of LTX (LTXSSTG) and SBT (SBTSSTG), which are bridged by disulfide bonds and efficiently incorporated them into Self-nanoemulsifying drug delivery system (SNEDDS). These prodrugs can bypass hepatic metabolism by entering the blood through intestinal lymphatic transport, following a similar oral absorption pathway to dietary lipids. It was found that LTXSSTG and SBTSSTG significantly improved oral bioavailability (about 4.5-fold for LTX and 3.4-fold for SBT) compared to their solution forms. Moreover, with LTXSSTG and SBTSSTG incorporating reduction stimulus-responsive spacer were much more effective in suppressing tumor growth in vivo with eliminated adverse effects than solution form. To sum up, this strategy provides a new avenue to enhance oral delivery of new toxoids.