Monte Carlo simulation is one of the most common and popular method of options pricing. The advantages of this method are being easy to use, suitable for all kinds of standard and exotic options and also are suitable for higher dimensional problems. But on the other hand Monte Carlo variance convergence rate is which due to that it will have relatively slow convergence rate to answer the problems, as to achieve accuracy when it has been d-dimensions, complexity is . For this purpose, several methods are provided in quasi Monte Carlo simulation to increase variance convergence rate as variance reduction techniques, so far. One of the latest presented methods is multilevel Monte Carlo that is introduced by Giles in 2008. This method not only reduces the complexity of computing amount in use of Euler discretization scheme and the amount in use of Milstein discretization scheme, but also has the ability to combine with other variance reduction techniques. In this paper, using Multilevel Monte Carlo method by taking Milstein discretization scheme, pricing spread option and compared complexity of computing with standard Monte Carlo method. The results of Multilevel Monte Carlo method in pricing spread options are better than standard Monte Carlo simulation.
Read full abstract