Abstract
Spread option contracts are becoming increasingly important, as they frequently arise in the energy derivative markets, e.g. exchange electricity for oil. In this paper, we study the pricing of European and American spread options. We consider the two-dimensional Black-Scholes Partial Differential Equation (PDE), use finite difference discretization in space and consider Crank-Nicolson (CN) and Modified Craig-Sneyd (MCS) Alternating Direction Implicit (ADI) methods for time stepping. In order to handle the early exercise feature arising in American options, we employ the discrete penalty iteration method, introduced and studied in Forsyth and Vetzal (2002), for one-dimensional PDEs discretized in time by the CN method. The main novelty of our work is the incorporation of the ADI method into the discrete penalty iteration method, in a highly efficient way, so that it can be used for two or higher-dimensional problems. The results from spread option pricing are compared with those obtained from the closed-form approximation formulae of Kirk (1995), Venkatramanan and Alexander (2011), Monte Carlo simulations, and the Brennan-Schwartz ADI Douglas-Rachford method, as implemented in MATLAB. In all spread option test cases we considered, including American ones, our ADI-MCS method, implemented on appropriate non-uniform grids, gives more accurate prices and Greeks than the MATLAB ADI method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.