Continuous glucose monitoring based on the minimally invasive implantation of glucose sensor is characterized by high accuracy and good stability. At present, glucose concentration monitoring based on fluorescent glucose capsule sensor is a new development trend. In this paper, we design a fluorescent glucose capsule sensor with a design optimization study. The motion trajectory of incident light in the fluorescent gel layer is simulated based on the Monte Carlo method, and the cloud maps of light intensity with the light intensity distribution at the light-receiving layer are plotted. Altering the density of fluorescent molecules, varying the thickness of tissue layers, and adjusting the angle of incidence deflection, the study investigates the influence of these parameter changes on the optimal position of reflected light at the bottom. Finally, the simulation results were utilized to design and fabricate a fluorescent glucose capsule sensor. Rabbit subcutaneous tissue glucose level tests and real-time glucose solution concentration monitoring experiments were performed. This work contributes to the real-time monitoring of glucose levels and opens up new avenues for research on fabricating glucose sensors.
Read full abstract