The classical paper by Lighthill (Commun. Pure Appl. Maths, vol. 109, 1952, p. 118) on the propulsion of ciliated microorganisms has become the reference against which many modern studies on swimming in low Reynolds number are compared. However, Lighthill's study was limited to propulsion in a uniform flow, whereas several biologically relevant microorganisms experience non-uniform flows. Here we propose a benchmark for ciliary propulsion in paraboloidal flows. We first consider the axisymmetric problem, with the microorganisms on the centreline of the background flow, and derive exact analytical solutions for the flow field. Our results reveal flow features, swimming characteristics and performance metrics markedly different from those generated in a uniform flow. In particular, the background paraboloidal flow introduces a Stokes quadrupole singularity at the leading-order flow field, generating vortices. Moreover, we determine the necessary conditions on the strength of the background flow for optimal power dissipation and swimming efficiency. We then consider the more general case of a microorganism off the centreline of the background flow. In this case, the squirmer experiences a paraboloidal, linear shear and uniform flows due to its position relative to the flow's centreline. Our findings show that while the linear shear flow does not affect the translational and rotational velocities of the squirmer, it does influence the velocity field and, therefore, the power dissipation.