The alteration of land use and cover (LULC) and the landscape ecological risk index (LERI) significantly impact carbon storage. Examining the carbon storage services in ecologically significant places is crucial for achieving a harmonious relationship between economic development in the region, conservation of terrestrial ecosystems, and mitigation of carbon sink depletion. This study aims to provide a complete framework that integrates the PLUS, Fragstats, and InVEST models. This framework will be utilized to optimize LULC and LERI, specifically maximizing carbon storage. The analysis will be carried out over an extended duration and from various viewpoints. The results indicate that the MJRB ecosystem experienced three clearly defined phases: enhancement (1985–1995), degradation (1995–2010), and subsequent enhancement (2010–2020). The LERI of high-level and carbon storage patterns showed similar trends. The degradation of local terrestrial ecosystems can primarily be due to the widespread use of ecological land caused by socio-economic development. The Ecological Preservation Scenario is projected to increase 41.97 Tg and 115.18 Tg in carbon storage. In contrast, the urban development scenario showed a substantial decrease in carbon storage rates, namely 0.89% and 1.34%, primarily evident in the Chengdu urban zone. An analysis of coupling coordination revealed a negative relationship between carbon storage and high LERI, while a positive connection was observed with low LERI. This study established a framework for rapidly assessing and forecasting the trajectory of carbon storage. It aids in optimizing land use patterns, conserving areas with high carbon sequestration, and ensuring the establishment of high-quality ecosystems. This study serves as a guide for achieving regional “dual carbon” objectives.
Read full abstract