In this paper, a new optimal feature selection based power quality event recognition system is proposed for the classification of power quality events. While Apriori algorithm is capable of processing categorical data, an effective feature vector, which represents distinctive features of digital power quality event data, has been obtained by means of the proposed k-means based Apriori algorithm feature selection approach. The proposed k-means based Apriori algorithm feature selection approach is presented with a power quality event recognition system. In the power quality event recognition system, normalization and segmentation processes have been applied to three-phase event voltage signals. Using 9-level multiresolution analysis, wavelet transform coefficients of the event signals have been obtained. By applying nine different feature extraction processes to these coefficients, a 90 dimensional feature vector belonging to three-phase event voltage signals has been extracted. Optimal feature vector has been obtained by applying the k-means based Apriori algorithm feature selection approach to the obtained feature vector, which has been applied as the last step to the input of the least squares support vector machine classifier and recognition performance results have been obtained. Real power quality event data have been used to evaluate the performance of the proposed feature selection approach and power quality event recognition system. According to the results, the proposed k-means based Apriori algorithm feature selection approach and power quality event recognition system are efficient, reliable and applicable and classify three-phase event types with a high degree of accuracy.