Abstract

Content-based audio signal classification into broad categories such as speech, music, or speech with noise is the first step before any further processing such as speech recognition, content-based indexing, or surveillance systems. In this paper, we propose an efficient content-based audio classification approach to classify audio signals into broad genres using a fuzzy c-means (FCM) algorithm. We analyze different characteristic features of audio signals in time, frequency, and coefficient domains and select the optimal feature vector by employing a noble analytical scoring method to each feature. We utilize an FCM-based classification scheme and apply it on the extracted normalized optimal feature vector to achieve an efficient classification result. Experimental results demonstrate that the proposed approach outperforms the existing state-of-the-art audio classification systems by more than 11% in classification performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.