Hydropower is becoming an important renewable energy source in Turkey, but the ever-changing atmospheric and climatic conditions of Turkey make it very difficult to be projected efficiently. Thus, an efficient estimation technique is crucial for it to be adopted as a reliable energy source in the future. This study evaluates Turkey’s hydropower potential in the Euphrates–Tigris Basin under changing climatic conditions. We adapted an empirical equation to model reservoir outflows, considering the site-specific characteristics of 14 major dams. Initial results from employing a model with a constant empirical coefficient, α, yielded moderate predictive accuracy, with R2 values ranging from 0.289 to 0.612. A polynomial regression identified optimal α values tailored to each dam’s surface area, significantly improving model performance. The adjusted α reduced predictive bias and increased R2 values, enhancing forecast reliability. Seasonal analysis revealed distinct hydropower trends: Ataturk Dam showed a notable decrease of 5.5% in hydropower generation up to 2050, while Birecik and Keban Dams exhibited increases of 2.5% and 2.2%, respectively. By putting these discoveries into practice, water resource management may become more robust and sustainable, which is essential for meeting Turkey’s rising energy needs and preparing for future climatic challenges. This study contributes valuable insights for optimizing reservoir operations, ensuring long-term hydropower sustainability, and enhancing the resilience of water resource management systems globally.