Accelerated life tests (ALT) have been used as a powerful tool to obtain time based information on the life span or performance characteristics over time of the items. Tests are performed under higher stressed levels instead of under normal use constraints. Obtained information as tests results are used to make predictions about life span over time at the real use. Accelerated testing under different stresses continuously helps in improving product reliability and in formulating warranty policies. This paper aims to provide insight into the methods of optimal acceleration life test designs. We first present a review of literature on optimum design of accelerated life tests in chronological order over the last six decades. Second, we present life time distributions with their mean lifetime or qth quantity and life stress relationship with their different factors level. We also present a flow chart outlining the process of accelerated life test planning. Further, we present the estimation methods commonly employed in the field of accelerated life testing, including least squares estimation, maximum likelihood estimation, graphical estimation, and Bayesian estimation. Finally, we provide an analytical discussion on accelerated life testing. This review aims to assist researchers, reliability engineers, and scientists in enhancing the design and planning of accelerated life tests.
Read full abstract