Integrated Gasification Combined Cycle (IGCC) power plants provide a cleaner and more efficient way to obtain energy from coal. In order to operate an IGCC power plant in a safe and stable manner, several input and output process parameters need to be monitored. However, due to economic and operational constraints, it is infeasible to place sensors at every input and output process parameter location. Hence, it becomes important to select the most effective sensor locations which lead to maximum information gain about the plant conditions. Practical issues present in an IGCC power plant, such as harsh physical conditions and variability in process parameters, make the optimal sensor location problem an especially complicated one. Further, sensors can have multiple objectives and they can produce uncertainties due to measurement errors. This work considers hybrid hardware and virtual sensing for advanced power systems with multiple objectives. In order to solve this real world large scale problem, we use a novel algorithm called Better Optimization of Nonlinear Uncertain Systems (BONUS). BONUS works in probability distribution space and avoids sampling for each optimization and derivative calculations iterations. A new algorithm for multi-objective optimization is also developed specifically for problem. The result of this nonlinear stochastic multi-objective problem is the non-dominated, or Pareto set, which provides trade-offs between various objectives like observability, cost, and thermal efficiency. This is the first attempt at solving the problem of optimal sensor deployment in advanced power plants, with consideration of hybrid hardware and virtual sensing and incorporation of uncertainty with multiple objectives.
Read full abstract