The problem of simultaneous LQG control and scheduling of a Networked Control System (NCS) with constant network induced delays at input and output and bandwidth limitations is investigated. Delays are considered at plant as well as controller side. Sufficient conditions for controllability, stabilizability, reconstructibility and detectability of the underlying networked control system are drawn. The proposed conditions extend previous works on structural properties of NCS by capturing both plant and controller side delays together with bandwidth limitations. A framework for computing the optimal LQG controller for the NCS with a fixed scheduling is provided. The proposed modeling approach facilitates use of LQG as well as other control methods for NCSs with delays and bandwidth limitations. In order to optimize performance, a semi-online scheduling procedure is proposed based on an offline look up table. The look up table assigns an optimal schedule with associated optimal LQG controller to initial conditions. The proposed scheme improves previous results by online deployment of schedule and LQG control with stability guarantees and very low computational overhead. A simulation example with communication delays, packet losses and bandwidth limitations in both sensor and actuator sides is included. Static optimal periodic communication sequence, Optimal Pointer Placement (OPP) approach proposed in previous works, a random access scheduling method representing contention based access policies and the proposed method are simulated and compared.