Abstract
The aim of the present research work has been to design an optimal MIMO LQG controller to reduce the drive-train, blades and tower mechanical stresses of a wind turbine (WT), and at the same time, to involve the WT in the grid primary frequency regulation when it is operating in full load (FL) zone. To verify the effectiveness of the proposed controller, the achieved results are compared to those obtained by a base-line controller based on a PI regulator.Simulation results show that thanks to these controllers, WT can effectively contribute to the grid frequency regulation, tracking tightly the generator power reference which depends on that frequency. Compared with the base-line controller, the LQG controller significantly reduces the mechanical stresses of the WT׳s most costly components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.