We develop a new dynamic continuous-time model of optimal consumption and investment to include independent stochastic labor income. We reduce the problem of solving the Bellman equation to a problem of solving an integral equation. We then explicitly characterize the optimal consumption and investment strategy as a function of income-to-wealth ratio. We provide some analytical comparative statics associated with the value function and optimal strategies. We also develop a quite general numerical algorithm for control iteration and solve the Bellman equation as a sequence of solutions to ordinary differential equations. This numerical algorithm can be readily applied to many other optimal consumption and investment problems especially with extra nondiversifiable Brownian risks, resulting in nonlinear Bellman equations. Finally, our numerical analysis illustrates how the presence of stochastic labor income affects the optimal consumption and investment strategy. Funding: A. Bensoussan was supported by the National Science Foundation under grant [DMS-2204795]. S. Park was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea, South Korea [NRF-2022S1A3A2A02089950].