Abstract
In recent years, frequent large-scale power grid accidents have caused serious economic losses and bad social impact, which has drawn great attention from power grid enterprises. As one of the key elements of production, safety investment plays an important role in improving the safety level and reducing accident loss. In this paper, System dynamics (SD) and Bayesian network (BN) are integrated to develop a novel safety investment optimization model for power grid enterprises, which takes into account the impact of safety investment factors on accidents and the interactions between them. Based on sensitivity analysis, critical safety investment factors are determined to form the subsystem of the SD model. Subsequently, the optimal safety investment strategy is determined by a three-step simulation. The simulation results show that there are barrel effects and a diminishing marginal utility in safety investment. The proposed safety investment optimization model is practical to provide technical supports and guidance for determining an effective safety investment strategy in power grid enterprises.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.