The present study explores the guidance of a robotic arm along a predefined path by implementing an optimal fuzzy fractional order PID controller-based control strategy. This method serves as a means to address the nonlinearity and unpredictability of the robotic manipulator, contingent upon the fuzzy logic controller's specifications and the employment of a clonal selection algorithm. The dynamic equation of the manipulator was considered as an initial point, followed by designing a fuzzy controller for this purpose. To validate the effectiveness of this approach, it was compared to other techniques, such as Fuzzy, Fuzzy-PID, and fuzzy-FOPID controllers, with PID and FOPID controller parameters optimized using clonal selection algorithms. Simulation results reveal that the fuzzy-FOPID variant outperformed other methods under varying load conditions and model uncertainties, using SIMULINK/MATLAB 2014a.