This paper studies the optimal experimental design problem to discriminate two regression models. Recently, López-Fidalgo et al. [2007. An optimal experimental design criterion for discriminating between non-normal models. J. Roy. Statist. Soc. B 69, 231–242] extended the conventional T-optimality criterion by Atkinson and Fedorov [1975a. The designs of experiments for discriminating between two rival models. Biometrika 62, 57–70; 1975b. Optimal design: experiments for discriminating between several models. Biometrika 62, 289–303] to deal with non-normal parametric regression models, and proposed a new optimal experimental design criterion based on the Kullback–Leibler information divergence. In this paper, we extend their parametric optimality criterion to a semiparametric setup, where we only need to specify some moment conditions for the null or alternative regression model. Our criteria, called the semiparametric Kullback–Leibler optimality criteria, can be implemented by applying a convex duality result of partially finite convex programming. The proposed method is illustrated by a simple numerical example.