Abstract
The problem of optimal experimental design for estimating parameters in linear regression models is placed in a general convex analysis setting. Duality results are obtained using two approaches, one based on subgradients and the other on Lagrangian theory. The subgradient concept is also used to derive a potentially useful equivalence theorm for establishing the optimality of a singular design and, finally, general versions of the original equivalence theorems of Kiefer and Wolfowitz (1960) are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.