Abstract
This paper proposes a global optimization framework to address the high computational cost and non convexity of Optimal Experimental Design (OED) problems. To reduce the computational burden and the presence of noise in the evaluation of the Shannon expected information gain (SEIG), this framework proposes the coupling of Laplace approximation and polynomial chaos expansions (PCE). The advantage of this procedure is that PCE allows large samples to be employed for the SEIG estimation, practically vanishing the noisy introduced by the sampling procedure. Consequently, the resulting optimization problem may be treated as deterministic. Then, an optimization approach based on Kriging surrogates is employed as the optimization engine to search for the global solution with limited computational budget. Four numerical examples are investigated and their results are compared to state-of-the-art stochastic gradient descent algorithms. The proposed approach obtained better results than the stochastic gradient algorithms in all situations, indicating its efficiency and robustness in the solution of OED problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.