In this paper, we propose a new multiphysics finite element method for a quasi-static poroelasticity model. Firstly, to overcome the displacement locking phenomenon and pressure oscillation, we reformulate the original model into a fluid-fluid coupling problem by introducing new variables-the generalized nonlocal Stokes equations and a diffusion equation, which is a completely new model. Then, we design a fully discrete multiphysics finite element method for the reformulated model-linear finite element pairs for the spatial variables (u,ξ,η) and backward Euler method for time discretization. And we prove that the proposed method is stable without any stabilized term and robust for many parameters and it has the optimal convergence order. Finally, we show some numerical tests to verify the theoretical results.
Read full abstract