Abstract

We introduce a new numerical method for solving time-harmonic Maxwell’s equations via the modified weak Galerkin technique. The inter-element functions of the weak Galerkin finite elements are replaced by the average of the two discontinuous polynomial functions on the two sides of the polygon, in the modified weak Galerkin (MWG) finite element method. With the dependent inter-element functions, the weak curl and the weak gradient are defined directly on totally discontinuous polynomials. Optimal-order convergence of the method is proved. Numerical examples confirm the theory and show effectiveness of the modified weak Galerkin method over the existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.