Abstract
This paper presents a new and efficient numerical algorithm for the biharmonic equation by using weak Galerkin (WG) finite element methods. The WG finite element scheme is based on a variational form of the biharmonic equation that is equivalent to the usual H2-semi norm. Weak partial derivatives and their approximations, called discrete weak partial derivatives, are introduced for a class of discontinuous functions defined on a finite element partition of the domain consisting of general polygons or polyhedra. The discrete weak partial derivatives serve as building blocks for the WG finite element method. The resulting matrix from the WG method is symmetric, positive definite, and parameter free. An error estimate of optimal order is derived in an H2-equivalent norm for the WG finite element solutions. Error estimates in the usual L2 norm are established, yielding optimal order of convergence for all the WG finite element algorithms except the one corresponding to the lowest order (i.e., piecewise quadratic elements). Some numerical experiments are presented to illustrate the efficiency and accuracy of the numerical scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.