In ultrasound imaging, state-of-the-art methods for transmit beam pattern (TBP) optimization have well-known drawbacks like non-uniform beam width over depth, significant side lobes, and quick energy drop-out beyond the focal region. To overcome these limitations, we develop a TBP optimization approach by focusing on its narrowband approximation and considering transmit delays as free variables instead of linked to specific focal depths. We formulate a non-linear Least Squares problem to minimize the difference between the TBP corresponding to a set of delays and the desired one, modeled as a 2D rectangle elongated along the beam axis. Three metrics are defined to quantitatively evaluate the results. Results obtained by synthetic simulations show that the main lobe width is considerably more intense (+31.5%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$+31.5\\%$$\\end{document} on average) and uniform (+28.7%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$+28.7\\%$$\\end{document} on average) over the whole depth range compared to classical focalized Beam Patterns. The application of the method to elastography shows improvements in the ultrasound energy concentration along a desired axis.