Abstract
AbstractAntenna arrays can enhance the performance and reduce the overhead of the wireless communication systems. However, the beam pattern synthesis of antenna arrays are difficult problems since the optimization properties are usually trade‐offs that affect each other. In this paper, we formulate a multiobjective beam pattern optimization problem (MBPOP) to simultaneously reduce the maximum sidelobe level (SLL) and achieve the nulls of the antenna array beam pattern. The multiobjective evolutionary algorithm based on decomposition (MOEA/D) is a general and effective algorithm to solve the MOPs. However, it may be easy to lose population diversity and converge to local optimum. To overcome the issues above, we propose an improved MOEA/D (IMOEA/D) to deal with the formulated MBPOP. IMOEA/D introduces the normal distribution crossover operator (NDX), Lévy flight strategy and Euclidean distance‐based solution selection mechanism to enhance the performance of conventional MOEA/D to make it more suitable to solve the formulated MBPOP. Experiments are conducted and the results indicate that the proposed IMOEA/D has a better performance in terms of the convergence rate and population diversity compared to other algorithms for solving the formulated MBPOP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Numerical Modelling: Electronic Networks, Devices and Fields
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.