Given the requirement of high-efficiency thermal dissipation for large-aperture space optical remote sensors, a radiator based on single-walled carbon nanotubes (SWCNTs) filled with waterborne polyurethane (SWCNTs/WPU) coatings was proposed in this work. In situ polymerized SWCNTs/WPU coatings allowed for the uniform distribution of acid-purified SWCNTs in WPU matrix. Modified oxygen-containing groups on purified SWCNTs enhanced the interfacial compatibility of SWCNTs/WPU and enabled an improved tensile strength 9 (26.3 MPa) compared to raw-SWCNTs/WPU. A high electrical conductivity of 5.16 W/mK and thermal conductivity of 10.9 S/cm were achieved by adding 49.1 wt.% of SWCNTs. Only 2.85% and 4.2% of declined ratios for electric and thermal conductivities were presented after 1000 bending cycles, demonstrating excellent durability and flexibility. The designed radiator was composed of a heat pipe, SWCNTs/WPU coatings and an aluminum honeycomb core, allowing for −1.6~0.3 °C of temperature difference for the in-orbit temperature and thermal balance experimental temperature of the collector pipe. Moreover, the close temperature difference for the in-orbit and ground temperatures of the radiator indicated that the designed radiator with high heat dissipation met the mechanical environment requirements of a rocket launch. SWCNTs/WPU would be promising electric/thermal interface materials in the application of space optical remote sensors.
Read full abstract